3. TOOLKIT DEMONSTRATION

- Examples

---------------------------------------------------------------------------------------------------------------------------------------------


See Examples page on the internet from the Main Menu:

 

 


---------------------------------------------------------------------------------------------------------------------------------------------

Small Signal


A very low signal-to-noise dataset is analyzed to identify the presence of oscillatory signal and it's frequency. 

-----------------------------------------------------------------------------------------------------------------

Multivariate Small Signal

 

A multivraiate dataset is analyzed by Multi-channel SSA and Varimax Rotation to isolate spatio-otemporal oscillatory modes from red-noise.

 

---------------------------------------------------------------------------------------------------------------------------------------------

Climate


Using Southern Oscillation Index, we demonstrate how the quasi-periodic oscillatory modes can be tested for their significance, reconstructed and predicted by Singular Spectrum Analysis (SSA). MTM analysis, including MTM Coherence, is also demonstrated. 

---------------------------------------------------------------------------------------------------------------------------------------------

Oceanography:


Multi-channel SSA is demonstrated using Global Sea Surface Temperature Anomalies dataset.  

---------------------------------------------------------------------------------------------------------------------------------------------

SSA Prediction:


SSA prediction of a noisy and noise-free, quasi-periodic signals. Demonstration of SSA cross-validation for choosing optimal prediction parameters. 

---------------------------------------------------------------------------------------------------------------------------------------------


Hydrology:


Analysis of annual minima of Nile river demonstrates how to perform SSA detrending and SSA prediction. 

--------------------------------------------------------------------------------------------------------------------------------------------- 

Seismology: 


SSA of seismograph of the Kobe earthquake demonstrates SSA reconstruction of a bursty oscillatory signal. 

---------------------------------------------------------------------------------------------------------------------------------------------

Finance: 


SSA of Forex time series captures short and long term trend components. 

---------------------------------------------------------------------------------------------------------------------------------------------

Paleoclimatology: 


Analysis of normalized annual tree-ring data from Argentina (441-1974) shows how to customize SSA noise null-hypothesis in presence of a dominant spectral peak, and to perform separation of a low-frequency trend by SSA. 

---------------------------------------------------------------------------------------------------------------------------------------------

Economics: 


Analysis of monthly Australian sales of red wine (1980 - 1995)  demonstrates identifying seasonal components of the spectrum, SSA detrending and prediction, and MTM reshaped spectrum. 

---------------------------------------------------------------------------------------------------------------------------------------------

Health: 


Analysis of a patient's test score time series.  Demonstrates identification/reconstruction of trend and high-frequency oscillatory components, and compares SSA and MTM Reconstructions.

--------------------------------------------------------------------------------------------------------------------------------------------- 

Physics:


Analysis of a sunspot time series demonstrates how to customize various MTM settings for long time series, customize SSA noise null-hypothesis,  SSA prediction and detrending. 

--------------------------------------------------------------------------------------------------------------------------------------------- 

MSSA Prediction:


Analysis and prediction of a noisy multivariate time series consisting of two channels, each containing quasi-periodic oscillatory modes.   

--------------------------------------------------------------------------------------------------------------------------------------------- 


Univariate Gap Filling:


Demonstrates novel gap-filling method for missing data. Includes analysis of a gappy and noisy time series containing quasi-periodic oscillatory modes. 

--------------------------------------------------------------------------------------------------------------------------------------------- 


Multivariate Gap Filling:


Demonstrates novel gap-filling method for missing data. Includes analysis of a gappy and noisy time series containing quasi-periodic, oscillatory spatio-temporal modes. --------------------------------------------------------------------------------------------------------------------------------------------- 

Automation:


Capabilities for automated data processing are demonstrated. Demo Automator workflows include processing data from multiple files and with multiple analysis tools. 


See also  Automator workflows in other Examples. 


--------------------------------------------------------------------------------------------------------------------------------------------- 

Scripting:


AppleScript and Matlab Data I/O demos. 

See Readme file in Scripts folder. 



Happy fishing in the ocean of noise!


---------------------------------------------------------------------------------------------------------------------------------------------


Feel free to send your suggestions and bugs found to support@spectraworks.com. 


---------------------------------------------------------------------------------------------------------------------------------------------